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Motivation

� Single execution side-channel attacks on exponentiations

� Previous ones require profiling or manual tuning or use ad-hoc
algorithms

� We describe how to use cluster classification algorithms instead
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Reminder: Exponentiation Algorithms

� Exponentiations in asymm. crypto
� Modular exponentiations in RSA
� Elliptic curve scalar multiplications in ECC

� Popular algorithms:
� Square-and-multiply-always (RSA) / double-and-add-always (ECC)
� Montgomery ladder (RSA, ECC)

� Key features of exponentiation algorithms
� Secret exponent processed bit/digit-wise in loop
� Mostly timing-safe, hence, operation sequence uniform (against SPA)
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Single-Execution Leakage

� Side-Channel Attackers only have single observations to exploit
� Due to ephemeral exponent or e.g. blinding countermeasure

� Certain amount of information about exponent bits (binary alg.) is
still leaking in most cases→ single-execution leakage
(adress-bit-related, localized leakage, ...
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Exploiting Single-Execution Leakage

binary exponentiation

loop iterations

samples

� Cut recorded exponentiation trace into samples

� Each corresponds to different secret bit (binary exp. alg.)

� Attack basically means to find correct partition = Classification
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Exploiting Single-Execution Leakage

� Template attacks
� Require profiling (difficult, think of e.g. blinding)

� Cross-correlation-based attacks
� Requires manually tuned thresholds
� Correlation disregards information (absolute values)
� Some are based on heuristic power models

(corr. coeff. makes more sense then)

� Walter’s Big Mac attack from 2001
� Ad hoc engineered algorithm
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Our Proposal

� Use algorithms from the established research-field of
’Pattern classification’

� Those are already heavily researched in other applications

� We propose to use unsupervised cluster classification algorithms
� Exploit single execution leakage of exponentiation algorithms
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Our Proposal

� Reminder: In profiled template attack, cut-out samples are classified by
matching to templates

binary exponentiation

loop iterations

samples

� Clustering algorithms classify the cut-out samples automatically
without profiling or manual tuning

� Unknown if 0 or 1 bits, but easy try-out

� Success depends on available leakage of course
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Unsupervised Cluster Classification Algorithms

� Unsupervised means no training data, no profiling

� Input a set of multi-dimensional samples/vectors e.g. cut-out trace-parts

� Algorithm estimates distributions

� Define free parameters of distribution (e.g. two cluster centers)

� Optimal algorithm depends on the distribution model (shape of clusters)
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Unsupervised Cluster Classification Algorithms

� Example algorithm:
k-means algorithm for unsupervised clustering

� Finds k cluster centers and corresponding classification

� Distribution assumption - shape of clusters:
� k equal Gaussian distributions
� Independent values in samples (dimensions are independent)
� Variance equal within clusters
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Unsupervised Cluster Classification Algorithms

� Input: Samples (cut-out trace parts) and number of clusters k

� Starts by choosing k random samples as initial cluster means
� Then iteratively:

� Compute Euclidean distance from all samples to current k means
� Classification: Assign all samples to closest mean→ k classes
� Compute new means of k classes from current classification
� Repeat until no change in class assignment

� Output: k cluster means and classification

� Repeat with different starting points to prevent local maxima
(best outcome based on sum-of-squared-error criterion selected)
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Practical Evaluation

� Laboratory setup (FPGA-based , trigger output, synchronized clock)
(Definitely not real world ;)

� Same setup as in our CT-RSA’12 paper:
Template attacks exploiting location-based leakage
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Practical Evaluation

� Straight-forward FPGA-based digital HW implementation:
� Elliptic curve scalar multiplication (Q = d · P) with affine input/output
� López and Dahab Montgomery ladder ’exponentiation’ algorithm,

binary field GF(2163), NIST parameters

� Fulfills properties for attack:
� Bitwise processing of 163 bit scalar
� Uniform operation sequence
� Some single execution leakage :)
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Practical Evaluation

� High-resolution inductive near-field probe (100µm resolution)

� Probe is closer to one of two registers

� Register access depends on current secret bit in loop
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Practical Evaluation

� FPGA die surface

� Multiple measurement positions in geometric regular array
(no profiling to find locations)
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Practical Evaluation

� Reminder: Cutting a trace into samples

binary exponentiation

loop iterations

samples

� Example from one measurement - 4 samples

Clustering | J.Heyszl et al. | | 16

© Fraunhofer

Trace Example



Practical Evaluation

� Reminder: Cutting a trace into samples

binary exponentiation

loop iterations

samples

� Example from one measurement - 4 samples

Clustering | J.Heyszl et al. | | 16

© Fraunhofer

Trace Example



Practical Evaluation

� Single measurement after clustering
� Returns 2 sample means and corresp. classification

� For visualization:
� Regard the samples/means as vectors in multi-dim. space
� Draw line through to means
� 1-D projection of samples on this line
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Practical Evaluation

� Clustering algorithms allow to derive posterior probabilities for each
sample describing likelihood of correct classification (basically low if
close to separation plane)

� Attacker may use this in a brute-force strategy:
� Trial bits with low post. probabilities first
� Repeat and increase number of trialed bits until correct exponent found
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Practical Evaluation

� Estimate remaining brute-force complexity after clustering attack

� All individual measurement positions:

� In 2 out of 9 cases, brute-force complexity is clearly feasible for
attackers (only 222 and 237 trials)
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Practical Evaluation

� What if exploited leakage is insufficient?

� Repeating measurements is impossible because exponent changes

� Cluster analysis provides straight-forward possibility to combine
(simultaneous) measurements:

� Simply concatenate cut-out samples
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Practical Evaluation

� Due to lack of mult. probes, meas. are repeated with const. inputs

� One measurement (after clustering, 1-D projection): Many Errors

� All measurements (after clustering, 1-D projection): No Errors
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Countermeasures

� Exponent blinding or coordinate randomization do not help

� Reduce SNR of single-execution leakage as far as possible

� Address sources of specific single-execution leakage.
E.g. Reduce location-based leakage using interleaved placement
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Conclusion

� Non-profiled attack against exponentiations
� Well established clustering algorithms
� No manual tuning
� Can be generalized to any single-/multi-variate single execution leakage

of exponentiation algorithms
� Combination of measurements can improve attack
→ no need to find best positions

� In our opinion, this should make cross correlation-based
single-execution attacks obsolete

� Clustering may also be interesting e.g. for SCA collision attacks
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Thank You
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Back-Up

� Example: Graphical representation of 2-dimensional samples (not my
data)

� In this example: samples cluster around two means/centroids
� This corresponds to binary exponentiation case
� The segmentation can be found through unsupervised algorithms

Figure: Source: http://www.mathworks.de/de/help/stats/kmeans.html
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Back-Up

� Elliptic curve scalar multiplication (Q = d · P)

� Binary field GF(2163), NIST Curve B-163 parameters

� López and Dahab Montgomery ladder ’exponentiation’ algorithm

� Affine x- and y-coordinates as input and output

� Fulfills requirements for successfull attack
� Bitwise processing of 163 bit scalar
� Uniform operation sequence for each bit
� Register usage depends on bits
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Back-Up
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